Prompt engineering

Prompt Engineering

Il prompt engineering è la pratica di progettare e ottimizzare gli input (detti “prompt“) che vengono forniti ai modelli di intelligenza artificiale basati sul linguaggio naturale, come i sistemi di chatbot o di elaborazione del linguaggio naturale (NLP). L’obiettivo del prompt engineering è garantire che il modello generi output di alta qualità, coerenti e rilevanti per il compito specifico.

Con l’ascesa dei grandi modelli di linguaggio come GPT-3 e Claude, il prompt engineering è diventato un aspetto cruciale per sfruttare al meglio le potenzialità di questi sistemi. I prompt ben progettati possono indirizzare il modello a generare risposte più accurate, informative e contestualizzate.

Il processo di prompt engineering comprende diverse fasi:

  • Definizione degli obiettivi: Stabilire chiaramente gli obiettivi del compito e le aspettative per gli output del modello.
  • Analisi del dominio: Comprendere il contesto e il dominio in cui il modello verrà utilizzato, per creare prompt più mirati.
  • Costruzione del prompt: Formulare il prompt iniziale, che può includere contesto, esempi, istruzioni e indicazioni per il modello.
  • Iterazione e affinamento: Testare e affinare il prompt attraverso un processo iterativo, valutando gli output del modello e apportando modifiche per migliorare la qualità delle risposte.
  • Valutazione e monitoraggio: Continuare a valutare e monitorare le prestazioni del modello con i prompt ottimizzati, apportando ulteriori aggiustamenti se necessario.

Alcune tecniche comuni di prompt engineering includono:

  • Prompt con pochi spunti (few-shot prompting): Fornire al modello alcuni esempi di input e output desiderati per indirizzarlo verso il compito specifico.
  • Prompt a catena (chain of thought prompting): Chiedere al modello di esplicitare il processo di ragionamento passo dopo passo prima di fornire la risposta finale.
  • Prompt con istruzioni (instruction prompting): Includere istruzioni chiare e dettagliate su come il modello dovrebbe svolgere il compito.
  • Prompt con esempi negativi (negative prompting): Fornire esempi di risposte indesiderate o errate per aiutare il modello a evitare tali output.

Il prompt engineering richiede una combinazione di competenze tecniche, come la comprensione dei modelli di linguaggio e delle tecniche di NLP, e competenze creative, come la capacità di formulare prompt chiari ed efficaci. È un’area di ricerca e pratica in rapida evoluzione, poiché i modelli di intelligenza artificiale diventano sempre più potenti e versatili.

Utilizzando il prompt engineering in modo efficace, le aziende e gli sviluppatori possono sfruttare al meglio le capacità dei modelli di linguaggio naturale e ottenere risultati più accurati e rilevanti per una vasta gamma di applicazioni, come chatbot, assistenti virtuali, sistemi di risposta a domande e molto altro.

Microservizi

Microservizi: un approccio di progettazione e sviluppo software che consiste nell’organizzare l’applicazione in una serie di servizi o componenti piccoli e autonomi, ciascuno dei quali

Read More »

HTTPS

HTTPS (Hypertext Transfer Protocol Secure) HTTPS è un protocollo di comunicazione utilizzato per garantire una connessione sicura e crittografata tra un client, solitamente un browser

Read More »

Database

Database Un database, spesso abbreviato come DB, è un sistema di archiviazione e gestione di dati strutturati progettato per l’archiviazione, l’organizzazione, la modifica e l’estrazione

Read More »

Scopri come trasformare le tue idee in progetti!

In Digital Connect siamo specializzati nel fornire servizi di sviluppo web e digital marketing ad aziende italiane operanti in svariati settori.